Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a mathematical model based on ordinary differential equations to investigate the spatially homogeneous state of tumor growth under virotherapy. The model emphasizes the interaction among the tumor cells, the oncolytic viruses, and the host immune system that generates both innate and adaptive immune responses. We conduct a rigorous equilibrium analysis and derive threshold conditions that determine the growth or decay of the tumor under various scenarios. Numerical simulation results verify our analytical predictions and provide additional insight into the tumor growth dynamics.more » « less
-
null (Ed.)We present a new mathematical model to investigate the transmission dynamics of cholera under disease control measures that include education programs and water sanitation. The model incorporates the impact of education programs into the disease transmission rates and that of water sanitation into the environmental pathogen dynamics. We conduct a detailed analysis to the autonomous system of the model and establish the local and global stabilities of its equilibria that characterize the threshold dynamics of cholera. We then perform an optimal control study on the general model with time-dependent controls and explore effective approaches to implement the education programs and water sanitation while balancing their costs. Our analysis and simulation highlight the complex interaction among the direct and indirect transmission pathways of the disease, the intrinsic growth of the environmental pathogen and the impact of multiple control measures, and their roles in collectively shaping the transmission dynamics of cholera.more » « less
-
We propose a multi-scale modeling framework to investigate the transmission dynamics of cholera. At the population level, we employ a SIR model for the between-host transmission of the disease. At the individual host level, we describe the evolution of the pathogen within the human body. The between-host and within-host dynamics are connected through an environmental equation that characterizes the growth of the pathogen and its interaction with the hosts outside the human body. We put a special emphasis on the within-host dynamics by making a distinction for each individual host. We conduct both mathematical analysis and numerical simulation for our model in order to explore various scenarios associated with cholera transmission and to better understand the complex, multi-scale disease dynamics.more » « less
An official website of the United States government
